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Abstract 

Background:  The Gleason grading system is an important clinical practice for diagnosing prostate cancer in pathol-
ogy images. However, this analysis results in significant variability among pathologists, hence creating possible 
negative clinical impacts. Artificial intelligence methods can be an important support for the pathologist, improving 
Gleason grade classifications. Consequently, our purpose is to construct and evaluate the potential of a Convolutional 
Neural Network (CNN) to classify Gleason patterns.

Methods:  The methodology included 6982 image patches with cancer, extracted from radical prostatectomy 
specimens previously analyzed by an expert uropathologist. A CNN was constructed to accurately classify the cor-
responding Gleason. The evaluation was carried out by computing the corresponding 3 classes confusion matrix; 
thus, calculating the percentage of precision, sensitivity, and specificity, as well as the overall accuracy. Additionally, 
k-fold three-way cross-validation was performed to enhance evaluation, allowing better interpretation and avoiding 
possible bias.

Results:  The overall accuracy reached 98% for the training and validation stage, and 94% for the test phase. Consid-
ering the test samples, the true positive ratio between pathologist and computer method was 85%, 93%, and 96% for 
specific Gleason patterns. Finally, precision, sensitivity, and specificity reached values up to 97%.

Conclusion:  The CNN model presented and evaluated has shown high accuracy for specifically pattern neighbors 
and critical Gleason patterns. The outcomes are in line and complement others in the literature. The promising results 
surpassed current inter-pathologist congruence in classical reports, evidencing the potential of this novel technology 
in daily clinical aspects.
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Background
Prostate cancer is the fifth deadliest cancer in the world 
and the second most frequent among men. Globocan 
2020 data count 1,414,259 new diagnoses and 375,304 
deaths in a single year. It is known that asymptomatic 
early-stage, well treated disease is associated with up to 
98% long-term survival according to guidelines [1–3].
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Pathological diagnosis still raises divergence between 
specialists, even despite using the same classical Gleason 
grading (GG) studies [4–7]. Tumor grading is a corner-
stone to guide cancer therapy, raising concerns among 
practitioners worldwide due to heterogeneity [8–10] and 
the need for novel tools. GG, described elsewhere [4], 
is purely visual analytic, throwing the spotlight on the 
standardization capability of artificial intelligence, with 
growing evidence in the deep learning field [11, 12].

Since 1998, Convolutional Neural Network (CNN) 
has been established and become a popular technique 
for image classification [13] Hence, different topologies 
have been constructed and evaluated for many applica-
tions. Some groups presented data on high-performance 
CNN Gleason grading standards classification [13–18]. 
However, in every context, specific possible limitations 
may be found in data organization, computational cost, 
and scope or focus of evaluation. These possible limita-
tions may compromise more accurate interpretations for 
specific contexts. Consequently, it is still necessary for 
medical literature publications in this field to complement, 
strengthen, and support the CNN potential and its contin-
uous evolution for this application. Therefore, the purpose 
of this study is to construct and evaluate a deep learning 
model for graduate the relevant Gleason patterns.

Method
Hypothesis
This study’s hypothesis is that a CNN system could be 
efficient to graduate the relevant GG patterns. Accord-
ingly, we managed to merge computing engineering 
science with high-standard pathological reports to con-
struct, train and evaluate a specific CNN system to clas-
sify G3, G4, and G5.

Design
The study design is divided into two main flow of work, 
Clinical Actions, and Computational Actions, with cor-
responding procedures.

Clinical actions
The laboratory of medical investigations from the Medi-
cal School of the University of Sao Paulo (FMUSP) col-
lected 32 previously reported radical prostatectomy 
specimens. They were colored by hematoxylin and eosin 
(H&E) method, and scanned by an Aperio® microscope, 
the slide’s images were analyzed, and Gleason patterns 
3, 4, and 5 were delineated by the corresponding spe-
cialists. Additionally, images from “the Prostate Cancer 
Grade Assessment (PANDA) Challenge” were also added 
to the dataset. Hence, providing a richer dataset to sup-
port to the model to improve performance, alongside 
robustness and capacity of generalizing. PANDA includes 

two open-access datasets: Karolinska Institute (images 
divided into background, benign and cancerous tissue) 
and Radboud University Medical Center (13 images 
divided into background, stroma, benign tissue, and 
Gleason patterns 3, 4, and 5). To ensure methodological 
similarity, only Radboud images were used to improve 
the initial training sample. All the samples underwent the 
same screening process previously presented [19].

Computational actions
The computational procedures are composed by Patch 
Extraction Step, Deep Learning Step (Fig. 1).

Patch extraction step  This step consists in building a 
dataset of extracted patches, small sample images sized 
256 × 256 pixels, with a corresponding 20 × zoom of 
previously marked regions. The zoom and patch size 
values were chosen considering they are adequate for 
individual and combined clinical element identification. 
Considering this parameter, we obtained a total of 6982 
patches (5036 from FMUSP prostatectomy samples and 
1946 from the PANDAS Challenge dataset). As a result, 
patches of Gleason´s 3, 4, and 5 were obtained and can be 
identified by their corresponding Slide (Fig. 2).

Deep learning step  This step included topology con-
struction considering a combination of multiple blocks. 
Previous architectures, characteristics, and important 
elements were considered to establish the structure 
proposed. Several experiments were performed using 
features of complex neural nets, combined blocks, and 
learning methods, resulting in the obtention of a high-
performing architecture for this purpose, as shown in 
Fig.  3. The neural net input starts with two convolu-
tional layers containing 32 filters with 5 × 5 kernel, and 
64 filters with 5 × 5 kernel, respectively. The number of 
filters is related to the feature extraction diversity in the 
input – the more filters, the more complementary fea-
tures are extracted and considered to support decision. 
The batch normalization layer standardizes output val-
ues of the corresponding layer, decreasing the chances of 
value range saturation. Max Pooling decreased the fea-
ture matrix dimension, allowing only the best parameters 
to proceed; the first sequence ends in a dropout layer. 
The other sequences (Second and Third) work similarly, 
except for the number of the filter (64 and 128 in the sec-
ond, 128 and 256 in the third). Lastly, information goes 
through the Fully Connected layer containing 512 neu-
rons within the hidden layer, batch normalization; the 
dropout of 0.5. SoftMax was used as an activation func-
tion. RMSprop was chosen as an optimizer for training; 
thus, the neural net can output the images classified as 
Gleason patterns 3, 4, and 5.
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Fig. 1  The steps of the Design with their corresponding illustrations: 1st Clinical Actions, resulting in the marked images. 2nd the computational 
actions showing the two main steps: Patch Extraction Step, and Deep Learning Step

Fig. 2  Illustration of patch extraction, connected to its corresponding slides and Gleason grade. Specifically, patches from slides SA, SB, and SC were 
separated to be applied to the cross-validation process, whereby they were alternately used as training, validation, and test
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The patch images extracted (Fig. 2) were applied to the 
architecture described (Fig.  3) for training and evalu-
ation. The separation of training, validation, and test 
groups was performed using the 80%, 10%, and 10% 

ratios. In addition, to obtain the most from our image set, 
we carried out a 3-time k-fold cross-validation, as shown 
in Fig. 4.

Specifically, this cross-validation took patches from 
slides SA, SB, and SC (Figs.  2 and 4) to be individually 
used as validation and test, and the patches from the 
spare slides complete the training data. This prevented 
patches of the same patient and slides from being present 
in the training, validation, and test groups; accordingly, 
providing a wider context variation, and composed out-
come, thus leading to a more reliable and unbiased out-
come, supporting better interpretation for corroboration. 
Slides SA, SB, and SC were chosen because each of them 
had the most balanced distribution of patches for Glea-
son 3, 4, and 5. The corresponding distribution and num-
ber of patches used for each k of the k-fold can be seen 
in Table  1. Finally, to improve model accuracy together 
with robustness, minimizing potential overfitting, data 
augmentation was performed before being applied to 
the neural net; specifically, this process includes random 
rotations, brightness, and zoon.

The evaluation process occurred in two steps for each k 
during the proposed k-fold cross-validation (Fig. 4). The 
first was the training and validation step, and the second 
was the test, computing typical and additional param-
eters of performance for better interpretation. The train-
ing and validation step evaluate the potential of learning 
the current application; thus, the parameters accuracy 
and loss were computed to validate this step. Once high 
rate of accuracy and loss were achieved, the correspond-
ing trained CNN topology were saved and submitted to 
the test step. The test step corroborates the previously 
obtained accuracy; as well as, measuring robustness and 
potential of generalize classification. During the test step, 
the corresponding image samples were applied to the 
trained CNN topology to be classified. As a result, gen-
erating the regarding confusion matrix; hence, allowing 
computing precision, sensitivity, and specificity, for inter-
pretation of possible consequences.

Results
Training and validation step
As can be seen in Fig.  5, among the different groups of 
the three k-folds, the training and validation curves were 
convergent in terms of accuracy and loss. For training 
and validation, the accuracy reached about 98%, and loss 
variates around 1% to 2.5%. In addition, the differences 
shown in Fig.  5 demonstrate there is no considerable 
underfitting or overfitting. Considering the proposed 
context, using slides from different patients for train-
ing and validation, in addition to the two different image 
sources to train the topology, the learning potential of the 
network is demonstrated. The total training processing 

Fig. 3  Proposed CNN architecture configuration
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time was estimated at 1200  s using one of our labora-
tory computers (Intel Core i7 3.50  GHz configurations, 
NVIDIA GeForce GTX 1060 Graphics, 16  GB RAM, 
2 TB Hard Disk).

Test step
After the training and validation of each k, the corre-
sponding trained model was subjected to the test step 
(Fig.  4). The test step was carried out using the corre-
sponding test data of each cross-validation (Table  1). 
For each k, the corresponding test data had never been 
seen by the model; hence, the network was blinded for 

every set of the test image to prevent bias. The confusion 
matrix with the results of each k-fold analysis group is 
presented in Figs. 6a, b, and c; additionally, the composi-
tion of all k-fold results is presented in Fig. 6d. From the 
resulting confusion matrixes, we obtained the pertinent 
metrics of efficacy, in addition to the general accuracy; 
precision, sensitivity, and specificity were also computed 
considering each class as a target object, therefore meas-
uring the potential performance of the model to sepa-
rate each class. Table  2 summarizes the findings with 
accuracy, precision, sensitivity, and specificity. Accuracy 
of around 95% was achieved in the final evaluation data 
from tests results (Table  2). Additionally, values above 
80% and close to 98% were achieved for precision, sensi-
tivity, and specificity for the different classes of Gleasons 
(Table 2). Considering the blind test applied, the classifi-
cation potential of the network was evidenced.

Specifically, the lowest performance values for Glea-
son 3, compared to patterns 4 and 5 (approximately 81% 
and 87%, for precision and sensitivity), can be explained 
by the lower number of samples for this class. Consider-
ing the way the patches were obtained, Gleason 3 is lower 
grade, more similar to noncancer tissue, and has lower 
volume in prostate specimens resulting in less material 
for analytical purposes. The consequences of this differ-
ence in the number of samples can also be seen with the 
lower specificity of the other two classes compared to 
Gleason 3, see Table 2. Considering the clinical relevance 
of patterns 4 and 5 and eventual non-relevant pattern 3 
findings, this disadvantage may represent minimal clini-
cal relevance.

Fig. 4  Illustration of how the image slides were separated for the cross-validation process, alternating slides SA, SB, and SC to be used as the source 
of patches for validation, test, and completing the rest of the training data, hence generating the final classification according to Gleason grades 
(G3, G4, and G5)

Table 1  Dataset separation considering, approximately, 
80%, 10%, 10% ratio, for training, validation, and test of each 
corresponding k, respectively

k-fold Class Train(n) ~ 80% Val(n) ~ 10% Test(n) ~ 10%

k = 1 Slides SC + SD + … SB SA

Gleason 3 614 73 69

Gleason 4 2205 271 258

Gleason 5 2801 348 349

k = 2 Slides SB + SD + … SA SC

Gleason 3 593 69 94

Gleason 4 2224 259 251

Gleason 5 2821 352 325

k = 3 Slides SA + SD + … SC SB

Gleason 3 589 94 73

Gleason 4 2185 281 268

Gleason 5 2807 339 352
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Fig. 5  Training and validation curves for each of the three kfold-cross-validation, the blue curve represents training patches and the orange 
curve represents validations patches. a Accuracy for the first cross-validation. b Loss for the first cross-validation. c Accuracy for the second 
cross-validation. d Loss for the second cross-validation. e Accuracy for the third cross-validation. f Loss for the third cross-validation
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Discussion
Inter-pathologist grading discordance is known to be a 
relevant issue in prostate cancer treatment with numer-
ous clinical consequences. Classical studies show inter-
pathologists concordance varies between 51–78%, with a 
greater effect on patterns 3 and 4 differentiation [8–10]. 
Artificial intelligence (AI) is growing in importance 
among novel technologies in diagnostic procedures, 
mainly involving pattern recognition, being widely used 
in pathology and radiology [20–22].

Multiple recent literature reports on prostate can-
cer pathology and AI usage show the relevance of this 
theme [13, 14, 23, 24]. In a recent paper from the Karo-
linska Institute, Ström et. al. [23], the authors obtained 
96–99% accuracy in terms of benign-malignant dif-
ferentiation and Gleason Grade concordance kappa of 
0.62. Bulten et al. [25], used a dataset composed of 5759 
prostate biopsies and reached a kappa agreement of 
91.8% with pathologist reports. Patches were used with 
sufficient zoom to find fundamental structures and to 

Fig. 6  Resulting confusion matrix of the corresponding set of test patches. a, b, and c Confusion matrixes of k = 1, 2, and 3, respectively. d 
Confusion matrix with the composed result of the 3 k-folds

Table 2  Precision, Sensitivity, Specificity, and Accuracy for each of the corresponding k

k-fold classe Precision(%) Sensitivity (%) Eespecificity (%) Accuracy(%)

k = 1 Gleason 3 90.91 86.95 99.01 94

Gleason 4 90.67 94.18 94.02

Gleason 5 97.36 95.41 97.25

k = 2 Gleason 3 87.95 77.65 98.26 95.02

Gleason 4 88.63 93.6 92.85

Gleason 5 96.9 96.01 97.09

k = 3 Gleason 3 73.07 79.16 96.62 95.67

Gleason 4 92.98 93.68 95.52

Gleason 5 98.55 96.31 98.53

média geral Gleason 3 83.7 80.85 97.95 94.89
Gleason 4 90.78 93.82 94.14
Gleason 5 97.62 95.91 97.62
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classify samples between cancer and non-cancer as well 
as to provide GG differentiation. Tolkach et al. [17] have 
separated cancer and non-cancer (stroma, glandular, and 
non-glandular benign tissue) patches obtaining more 
than 1.67 million patches.

The studies above have greatly contributed to the cur-
rent knowledge of AI application to this field. None-
theless, investigations and alternative approaches with 
new topologies must be continuously carried out and 
constructed to complement the current knowledge. 
We have thus developed a topology with tuned param-
eters regarding the number of filters, kernel sizes, layer 
sequence, number of hidden layers, activation function, 
and optimizer. Our proposed investigation and imple-
mentation complement and support the studies carried 
out in different contexts. The promising results, show-
ing the performance of grading G3, G4, and G5, are 
in line with the literature, hence reinforcing the high 
potential of AI methods for this classification. Addi-
tionally, alternatives are offered to be used and evolved, 
contributing to the growing knowledge and evidence in 
this field.

As a limitation, the limited number of samples is noted 
for Gleason 3 pattern. However, Fig. 6 demonstrates that 
misclassification between classes in terms of numbers 
and percentages still statistically motivating. Further-
more, most misinterpretations are between neighboring 
Grades 3 and 4 (only 1 patch of Gleason 3 was inter-
preted as Gleason 5) with a minimal potential of clinical 
repercussion. Accordingly, considering that patches rep-
resent small portions of a large area, these few misinter-
pretations have minimal significance for the classification 
of the whole pathological area of the slide, minimizing 
possible interpretation effects.

Future work will focus on gathering additional collabo-
rators and performing investigations, parallelly evaluat-
ing different promising topologies with the same dataset. 
With a dataset with wider variances, we will obtain the 
differences among topologies performance. Finally, we 
will include the construction of a mosaic from classified 
patches, creating heat map images, and provide a classifi-
cation of the whole digital slides.

Conclusion
Pathology is a cornerstone to support intervention 
discussion between practitioner and patient in actual 
customized prostate cancer care involving novel ther-
apies (active surveillance, focal) [26, 27] and classic 
radical ones (radiation therapy and radical prostatec-
tomy) [28]. Artificial intelligence has demonstrated its 
great potential in helping pathology pattern recogni-
tion with high accuracy. Our proposed CNN model 
added evidence to supports this potential and provides 

a new alternative to be used and evolved, following the 
trend towards clinical usage in medical daily practices, 
consequently increasing the standards on pattern rec-
ognition to optimize clinical decisions, enabling best 
therapeutical results.
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