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Abstract
Background  Cervical spondylotic myelopathy (CSM) is a prevalent degenerative condition resulting from spinal 
cord compression and injury. Laminectomy with posterior spinal fusion (LPSF) is a commonly employed treatment 
approach for CSM patients. This study aimed to assess the effectiveness of machine learning models (MLMs) in 
predicting clinical outcomes in CSM patients undergoing LPSF.

Methods  A retrospective analysis was conducted on 329 CSM patients who underwent LPSF at our institution from 
Jul 2017 to Jul 2023. Neurological outcomes were evaluated using the modified Japanese Orthopaedic Association 
(mJOA) scale preoperatively and at the final follow-up. Patients were categorized into two groups based on clinical 
outcomes: the favorable group (recovery rates ≥ 52.8%) and the unfavorable group (recovery rates < 52.8%). Potential 
predictors for poor clinical outcomes were compared between the groups. Four MLMs—random forest (RF), logistic 
regression (LR), support vector machine (SVM), and k-nearest neighborhood (k-NN)—were utilized to predict clinical 
outcome. RF model was also employed to identify factors associated with poor clinical outcome.

Results  Out of the 329 patients, 185 were male (56.2%) and 144 were female (43.4%), with an average follow-up 
period of 17.86 ± 1.74 months. Among them, 267 patients (81.2%) had favorable clinical outcomes, while 62 patients 
(18.8%) did not achieve favorable results. Analysis using binary logistic regression indicated that age, preoperative 
mJOA scale, and symptom duration (p < 0.05) were independent predictors of unfavorable clinical outcomes. All 
models performed satisfactorily, with RF achieving the highest accuracy of 0.922. RF also displayed superior sensitivity 
and specificity (sensitivity = 0.851, specificity = 0.944). The Area under the Curve (AUC) values for RF, Logistic LR, SVM, 
and k-NN were 0.905, 0.827, 0.851, and 0.883, respectively. The RF model identified preoperative mJOA scale, age, 
symptom duration, and MRI signal changes as the most significant variables associated with poor clinical outcomes in 
descending order.
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Background
Cervical spondylotic myelopathy (CSM) is a common 
degenerative neurological condition that occurs when the 
spinal cord is compressed due to degenerative changes 
or traumatic injury to the cervical spine [1, 2]. If left 
untreated, 20–60% of patients with CSM may experi-
ence neurological deterioration [3, 4]. Treatment options 
for CSM include anterior and/or posterior approaches to 
the spine [5, 6]. The anterior approach is typically used 
for patients with anterior spinal cord issues or cervical 
kyphosis, while the posterior approach is more com-
monly employed for treating multilevel stenosis and dor-
sal pathology [7–9].

There are two main posterior approaches for treat-
ing CSM: Laminectomy with or without posterior spi-
nal fusion (LPSF) and laminoplasty [10, 11]. The choice 
between these approaches depends on individual cases 
and various clinical and radiological factors [7, 8]. LPSF is 
often recommended for patients experiencing axial neck 
pain, reduced cervical lordosis, and significant transla-
tional movement with flexion-extension [12, 13].

While some studies have examined predictors of clini-
cal outcomes in CSM patients undergoing LPSF, factors 
such as patient age, smoking, preoperative neurological 
status, symptom duration, and the presence of comor-
bidities have been suggested to influence outcomes [12, 
14, 15].

Machine learning models (MLMs) have become a valu-
able tool for analyzing the impact of different variables 
[16–18]. These models can identify patterns and relation-
ships in data sets, making predictions based on flexible 
data relationships without relying on specific Eqs. [19, 
20]. MLMs have increasingly been used in biostatis-
tics and medicine to categorize and predict patient out-
comes [18, 20–22]. However, there is limited research on 
using MLMs to predict factors influencing the clinical 
outcomes of CSM patients undergoing LPSF. This study 
seeks to evaluate the effectiveness of MLMs in predicting 
these factors.

Methods
Study population
We conducted a retrospective analysis of 329 consecutive 
patients diagnosed with cervical spondylotic myelopathy 
(CSM) based on radiological findings who underwent 
cervical laminectomy and fusion at our institution. The 
study included patients treated between Jul 2017 and Jul 

2023, with approval from our institute’s ethics commit-
tee and written informed consent from all participants. 
Patients with a history of prior cervical surgery, cervical 
spine tumors, or congenital cervical deformities were 
excluded from the study.

Evaluation of clinical outcomes
We assessed patients’ neurological status using the modi-
fied Japanese Orthopaedic Association (mJOA) scale 
before surgery and at the last post-operative follow-up. 
The recovery rate of myelopathy was calculated using 
the formula: Recovery Rate = (Postoperative JOA score - 
Preoperative JOA score) / (17 - Preoperative JOA score) 
× 100%. Previous research has indicated that a minimum 
clinically important difference (MCID) for JOA score 
recovery rate is 52.8% [14, 23]. Patients were categorized 
into two groups: the good group (those achieving MCID) 
and the poor group (those not achieving MCID). Various 
variables such as age, gender, BMI, smoking status, diabe-
tes, number of laminectomy levels, MRI signal changes, 
symptom duration, preoperative JOA scale, Pavlov ratio, 
cervical curvature, and range of motion (ROM) were 
compared between the two groups as potential predic-
tors for poor clinical outcomes.

Radiological assessment
Radiological evaluations of the cervical spine, including 
plain radiographs, cervical computed tomography (CT) 
scans, and cervical MRI scans before and after surgery, 
were conducted. Cervical spinal curvature based on 
Cobb’s method and the canal-body ratio (Pavlov ratio) 
were measured preoperatively and postoperatively. Cer-
vical ROM was calculated by summing the cervical 
angles in maximal flexion and extension on lateral radio-
graphs. Rates of loss of cervical curvature and ROM were 
assessed using specific formulas [12, 14, 24].

Loss of lordosis (%) = (preoperative cervical curvature 
- final visit.

cervical curvature)/ (preoperative cervical curvature) 
×100%.

Loss of cervical spine ROM (%) = (preoperative ROM - 
final visit.

ROM)/ (preoperative cervical curvature) ×100%.
Signal changes within the spinal cord were identified 

using T1- and T2-weighted MRI images. All radiological 
measurements were performed by a senior author who 
was blinded to the clinical outcomes.

Conclusions  This study highlighted the effectiveness of machine learning models in predicting the clinical outcomes 
of CSM patients undergoing LPSF. These models have the potential to forecast clinical outcomes in this patient 
population, providing valuable prognostic insights for preoperative counseling and postoperative management.

Keywords  Cervical spondylotic myelopathy, Laminectomy with posterior spinal fusion, Clinical outcome, Japanese 
orthopaedic association scale, Machine learning models
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Statistical analysis
Data analysis was carried out using SPSS 23 software. 
Results were presented as mean ± standard deviation. 
Statistical tests including Mann-Whitney U test, inde-
pendent t-test, and Pearson’s chi-square test were used 
to compare variables between the good and poor out-
come groups. Additionally, binary logistic regression 
analysis was conducted to identify independent associa-
tions between prognostic factors and clinical outcomes. 
A significance level of p < 0.05 was considered statistically 
significant.

Model development
In this research, we employed four machine learning 
models: random forest (RF), logistic regression (LR), sup-
port vector machine (SVM), and k-nearest neighbors 
(k-NN), to predict treatment failure in thoracolumbar 
burst fractures treated with SSPSF. Additionally, LR and 
RF models were used to analyze factors associated with 
treatment failure. Each model underwent training before 
assessment. The dataset was split into training and test 
sets at an 80:20 ratio. The training set was used to train 
the models, while the test set was used to evaluate model 
performance. Feature selection was based on significance 
in univariate analysis, with significant features from the 
univariate analysis serving as inputs for the machine 
learning techniques.

Decision tree (DT) and random forest (RF) models
A decision tree (DT) is a tree-like structure that makes 
decisions based on input data, with the root node pos-
ing the initial question. Each node is connected to sub-
sequent child nodes through branches, determining the 
best-split feature using a split criterion. The binary DT 
divides each parent node into two child nodes until all 
observations are classified, leading to a leaf node or out-
come. Random forest (RF) is an ensemble of multiple 
DTs. Each tree independently predicts the outcome and 
votes for the most likely class. RF assigns the outcome 
based on the majority vote, leveraging multiple trees to 
make accurate predictions by capturing complex rela-
tionships. In this study, 500 DTs were utilized to con-
struct the RF model, known for handling complex data 
and mitigating overfitting in classification and regression 
tasks [25, 26].

Logistic regression (LR)
Logistic regression (LR) is a widely used predictive model 
for clinical decision-making and binary outcome classi-
fication. The LR algorithm generates a sigmoid curve to 
depict the relationship between inputs and outcomes, 
mapping inputs to probabilities (ranging from 0 to 1) that 
indicate the likelihood of belonging to one of two classes. 
By employing the logistic regression model, calculating 

the probability of each data point belonging to a specific 
outcome is straightforward. Following the determination 
of probabilities for each individual’s class membership, 
individuals are assigned to the group with the highest 
probability.

Support vector machine (SVM)
Support vector machine (SVM) is a machine learning 
algorithm used for regression and classification tasks, 
finding applications in various fields such as chemomet-
rics, bioinformatics, and biometrics. The core principle 
involves establishing an optimal decision boundary, rep-
resented as a line, to separate data points and minimize 
errors. In a two-dimensional plane, each dimension cor-
responds to an attribute or feature, with observations 
depicted as data points. The algorithm aims to create a 
hyperplane that effectively separates one group of points 
from another in a linear manner. When data is linearly 
separable, hyperplanes with maximum margins between 
points and the hyperplane are ideal for accurate pre-
dictions. In cases where data is not linearly separable, 
a kernel function is employed to map data to a higher-
dimensional space, enabling linear separation without 
altering the original data. In this study, the radial basis 
function (RBF) kernel, known for its generalizability, was 
utilized [27, 28].

K-nearest neighbors (K-NN)
The k-nearest neighbors (k-NN) algorithm is a straight-
forward supervised machine learning technique used 
for classification and regression. Its objective is to assign 
a data point to a class based on the nearest point in the 
training dataset. The predictive class is determined by the 
majority class among the nearest neighbors. For regres-
sion, the average value of neighboring points is used. The 
algorithm’s steps for classifying new data involve deter-
mining the number of nearest neighbors (k), calculating 
distances between new data and training data points, 
ranking distances, and classifying the new data based on 
majority votes from neighboring points.

Performance Evaluation The performance of predictive 
models was assessed using metrics such as accuracy, sen-
sitivity, specificity, positive predictive value (PPV), and 
negative predictive value (NPV). Additionally, the area 
under the curve (AUC) of the receiver operating charac-
teristic (ROC) was employed to evaluate the models’ abil-
ity to predict treatment failure [29, 30].

Software
For statistical analysis, SPSS version 23 was used to 
present descriptive and inferential statistics, as well as 
to conduct univariate and multivariate analyses. The 
randomForest package was employed for fitting the RF 
model, the e1071 package for SVM fitting, and the caret 
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package for calculating performance metrics. These 
packages are available in R4.0.3 software.

Results
Table  1 summarizes the demographic characteristics 
of 329 patients who underwent posterior cervical lami-
nectomy and fusion. The cohort comprised 185 males 
(56.2%) and 144 females (43.8%), with a mean age of 
64.23 ± 7.21 years and an average follow-up duration of 
17.86 ± 1.74 months. Among the patients, 137 individu-
als (41.6%) underwent ≤ 3 levels of cervical laminectomy 
and fusion, while 192 cases (58.4%) underwent > 3 levels 
(Tables  1 and 2). Table  3 presents various variables and 
clinical outcomes. The favorable outcome group included 
267 patients with a JOA score recovery rate ≥ 52.8%, 
whereas the poor outcome group comprised 62 patients 
with a JOA score recovery rate < 52.8%. A statistically sig-
nificant improvement in mJOA score was observed at the 
final follow-up (P < 0.05). Table 2 displays the mean and 
standard deviations of baseline and final values of radio-
logical and clinical characteristics.

Predictors of poor clinical outcome based on univariate 
analysis
In our investigation, age, preoperative mJOA scale, symp-
tom duration, and MRI signal changes were identified 
as predictors of poor clinical outcome in the univariate 
analysis (p < 0.05) (Tables  3 and 4). No association was 
found between clinical outcome and gender, number 
of laminectomy levels, smoking status, diabetes melli-
tus, BMI, preoperative Pavlov ratio, preoperative cervi-
cal curvature, and preoperative cervical spine range of 
motion (Tables 3 and 4).

Table 1  Descriptive characteristics of the sample
Variable Frequency 

(%)
Sex Male 185 (56.2%)

Female 144 (43.8%)
Clinical 
outcome

Poor 62 (18.8%)
Good 267 (81.2%)

Number of 
laminectomy 
levels (n)

≤ 3 137 (41.6%)
> 3 192 (58.4%)

Signal changes 
in MRI

No change in signal intensity 77 (23.4%)
Signal change on T1- + T2-weighted 
images

146(44.4%)

Signal change on T2-weighted images 106 (32.2%)
Smoking Yes 95 (28.9%)

No 231 (71.1%)
Diabetes 
Mellitus

Yes 100 (30.4%)
No 229 (69.6%)

Table 2  Mean and standard deviation of quantitative variables
Variable Mean Standard Deviation
Age 64.23 7.21
Follow Up(months) 17.86 1.74
Duration of symptoms(months) 10.21 2.23
Body Mass Index 24.01 1.59
Preoperative JOA scale 12.21 1.42
Final JOA scale 15.18 1.54
Preoperative Pavlov ratio 0.71 0.022
Final Pavlov ratio 0.98 0.02
Preoperative Curvature (°) 13.93 1.24
Final Curvature (°) 11.02 1.41
Preoperative Cervical spine ROM(°) 34.31 5.18
Final Cervical spine ROM(°) 15.33 4.51

Table 3  Relationship between qualitative variables and clinical outcomes
Variable Clinical outcomes Statistical Analysis

Favorable outcome
N (%)

Unfavorable
outcome
N (%)

Sex Male 149 (80.5) 36 (19.5) P = 0.325
Female 118 (81.9) 26 (18.1)

Number of laminectomy levels (n) ≤ 3 115 (83.9) 22 (16.1) P = 0.237
> 3 152 (79.2) 40(20.8)

Signal changes in MRI No change in signal intensity 74 (96.1) 3 (3.9) *P < 0.001
Signal change on T1- + T2-weighted images 105 (71.9) 41 (28.1)
Signal change on T2-weighted images 88 (83.00) 18(17.00)

Smoking Yes 77 (81.3) 18(18.8) P = 0.401
No 190(81.2) 44 (18.8)

Diabetes Mellitus Yes 75 (75.00) 25 (25.00) P = 0.163
No 192 (83.8) 37 (16.2)
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Predictors of poor clinical outcome based on multivariate 
analysis
Binary logistic regression analysis revealed that age (odds 
ratio [OR] 2.08; 95% confidence interval [95% CI] 1.47–
2.54; P = 0.013), preoperative mJOA scale (OR 3.52; 95% 
CI 2.83–4.56; P < 0.001), and symptom duration (OR 1.37; 
95% CI 1.01–2.01; P = 0.031) were independent predictors 
of poor clinical outcome (Table 5).

Each machine learning model utilized feature selec-
tion to assess the independent significance of risk factors. 
According to the mean Gini index, the RF model iden-
tified preoperative mJOA scale, age, symptom duration, 
and MRI signal changes as the most crucial variables 
in descending order. The study evaluated the predictive 

accuracy of LR, RF, SVM, and k-NN models for poor 
clinical outcomes. RF demonstrated the highest accuracy 
of 0.922, followed by SVM at 0.901, k-NN at 0.887, and 
LR at 0.876, respectively. RF also showed superior sensi-
tivity and specificity compared to the other models (sen-
sitivity = 0.851, specificity = 0.944). LR, SVM, and k-NN 
predicted poor clinical outcomes with negative predic-
tive values (NPVs) of 0.849, 0.803, and 0.794, respectively. 
The AUC values for RF, LR, SVM, and k-NN were 0.905, 
0.827, 0.851, and 0.883, respectively (Table 6).

Discussion
Our results showed that age, preoperative mJOA scale, 
and duration of symptoms were predictors of poor clini-
cal outcome. There are several studies that evaluated the 
relationship between preoperative severity of myelopa-
thy/duration of myelopathy symptoms with the clinical 
outcome of patients with CSM [2, 14]. The majority of 
evidence has revealed a significant predictive value for 
the severity of preoperative myelopathy and duration of 
myelopathy symptoms in the clinical outcomes of these 
patients [8, 15]. However, some studies reported no sig-
nificant relationship between the modified Japanese 
Orthopaedic Association (mJOA) or JOA recovery rate 
after operation and the severity of baseline myelopa-
thy symptoms [31]. In a retrospective study, Gao et al. 
assessed the clinical outcome of 145 consecutive patients 
undergoing surgery for CSM, with a mean followup of 5 
years. Their results showed that subjects with a preop-
erative JOA of ≤ 9 were 4.84 times more likely to exhibit 
a “fair” outcome (< 50% recovery rate) in comparison 
with those with a JOA > 9 [32]. Furthermore, Pumberger 
et al. showed that cases with less severe myelopathy on 
the Nurick grading system (≤ 3) were more likely to 
achieve a grade of 0, 1, or 2 after surgery in compari-
son with those with a baseline grade of ≥ 4. Moreover, 
they reported that cases with symptom duration of less 
than 1 year were 4.8 times more likely to improve and 14 
times more likely to return to a Nurick grade of 0 after 
operation when compared to the subjects with symptom 
duration of more than 1 year [33]. There is a controversy 
on the impact of the age on clinical outcome of patients 
with CSM [5]. Our results showed that advanced age was 
associated with poor outcome. Although the majority of 
evidence demonstrated a significant predictive value for 
age in patients with CSM, some studies revealed no asso-
ciation between age and outcomes in terms of mJOA, 
Nurick, and SF-36 scores [5, 34]. Based on the analysis 
of the Cervical Spondylotic Myelopathy (CSM)North 
America and CSMInternational datasets, Tetreault et al. 
reported that patients with advanced age were less likely 
to achieve an mJOA score ≥ 16 at 12 months or achieve a 
MCID after operation for CSM [10]. One hypothesis that 
could explain this finding is that people who are younger 

Table 4  Relationship between clinical outcomes and 
quantitative variables
Variable Clinical outcomes Statistical 

AnalysisGood 
outcome
N (%)

Poor 
outcome
N (%)

Age (year) 60.73 ± 6.22 68.24 ± 5.61 *P < 0.001
Follow Up (months) 17.49 ± 1.43 18.32 ± 1.42 P = 0.421
Duration of 
symptoms(months)

8.22 ± 1.64 15.11 ± 1.57 *P = 0.023

Body Mass Index 24.27 ± 1.40 23.73 ± 1.72 P = 0.522
Preoperative mJOA scale 12.66 ± 1.34 10.39 ± 1.35 *P = 0.002
Final mJOA scale 15.32 ± 1.23 12.22 ± 1.19 *P = 0.009
Preoperative Pavlov ratio 0.74 ± 0.06 0.76 ± 0.21 P = 0.122
Final Pavlov ratio 0.97 ± 0.7 0.96 ± 0.23 P = 0.227
Preoperative Curvature (°) 14.55 ± 1.20 13.78 ± 1.13 P = 0.343
Final Curvature (°) 11.29 ± 1.42 10.44 ± 1.47 P = 0.288
Preoperative Cervical spine 
ROM(°)

36.15 ± 1.73 33.55 ± 1.52 P = 0.552

Final Cervical spine ROM(°) 15.84 ± 1.63 14.67 ± 1.42 P = 0.330

Table 5  Binary Logistic Regression Analysis
variables Odds ratio 95% CI P value
Age 2.08 1.47–2.54 *P = 0.013
Signal changes in MRI 1.24 0.83–1.91 P = 0.421
Duration of symptoms 1.37 1.01–2.01 *P = 0.031
Preoperative mJOA scale 3.52 2.83–4.56 *P < 0.001

Table 6  Evaluation criteria for comparison performance of 
machine learning models (LR, RF, SVM and k-NN)
Evaluation criteria Model
variables RF LR SVM K-NN
Accuracy 0.922 0.876 0.901 0.887
Sensitivity 0.851 0.675 0.733 0.804
Specificity 0.944 0.918 0.909 0.923
Positive predictive value 0.722 0.783 0.701 0.688
Negative predictive value 0.884 0.849 0.803 0.794
AUC 0.905 0.827 0.851 0.883
RF: Random forest; LR: Logistic regression; SVM: Support vector machine; k-NN: 
k- nearest neighbor; AUC: area under the curve of mean receiver operating 
characteristics
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and less severely affected have minor neuropathologic 
changes in the spinal cord [10, 14].

The objective of this study was to employ machine 
learning models to predict factors associated with poor 
clinical outcomes of patients with CSM who underwent 
LPSF. The results presented in Table  6 indicate that all 
machine learning models performed well, with Random 
Forest (RF) demonstrating superior performance across 
all criteria in predicting treatment failure with the least 
amount of error. When comparing the classification abil-
ity of the evaluated models, RF outperformed the others. 
RF is an ensemble learning method that combines mul-
tiple decision trees to make predictions. Several charac-
teristics contribute to its superior performance [25, 35]. 
Firstly, the ensemble approach helps mitigate overfitting 
and enhances the model’s generalization ability by com-
bining predictions from different subsets of the data. 
Secondly, RF provides a measure of variable importance, 
identifying the relative contribution of each input vari-
able in making predictions. This feature aids in identify-
ing influential factors associated with treatment failure. 
Additionally, RF is capable of capturing complex non-
linear relationships, handling outliers and missing data, 
and does not assume a specific data distribution, making 
it suitable for analyzing complex datasets without strict 
assumptions [35, 36]. The study found that all models 
demonstrated acceptable performance in terms of the 
area under the curve (AUC), yielding reliable predictions 
without sacrificing sensitivity and specificity. However, it 
was noted that the performance of the predicting mod-
els is dependent on the training dataset, and partiality in 
training can introduce bias. The study used 80% of the 
data for training and 20% for testing, but acknowledged 
that a larger dataset would help reduce bias. Missing 
data was identified as an important limitation, but in this 
study, there was no missing data due to meticulous physi-
cal exams and clinical evaluations.

Limitations
Limitations of the study should be considered when 
interpreting the findings and their clinical implica-
tions. The retrospective design and reliance on exist-
ing medical records may lead to incomplete or missing 
data, potentially limiting the ability to account for all 
relevant variables and confounders. Additionally, the 
study was conducted at a single center, potentially lim-
iting the generalizability of the findings. Although the 
study included 329 subjects, a larger sample size would 
enhance statistical power and generalizability. While 
the machine learning models demonstrated satisfactory 
predictive performance, their interpretability may be 
limited. Understanding the specific factors driving the 
predictions of these models can be challenging, poten-
tially affecting their clinical utility and decision-making 

process. Prospective studies with standardized data col-
lection protocols would provide more robust and com-
prehensive results.

Conclusions
This study demonstrated the efficacy of machine learn-
ing models in predicting the clinical outcomes of patients 
with CSM who underwent LPSF. The findings underscore 
the capacity of these models to anticipate clinical results 
in this particular patient cohort, offering invaluable prog-
nostic information for guiding preoperative discussions 
and postoperative care.
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