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Abstract

Background: Best practice “bundles” have been developed to lower the occurrence rate of surgical site infections
(SSI’s). We developed artificial neural network (ANN) models to predict SSI occurrence based on prophylactic
antibiotic compliance.

Methods: Using the American College of Surgeons National Quality Improvement Program (ACS-NSQIP) Tampa
General Hospital patient dataset for a six-month period, 780 surgical procedures were reviewed for compliance with
SSI guidelines for antibiotic type and timing. SSI rates were determined for patients in the compliant and non-
compliant groups. ANN training and validation models were developed to include the variables of age, sex, steroid
use, bleeding disorders, transfusion, white blood cell count, hematocrit level, platelet count, wound class, ASA class,
and surgical antimicrobial prophylaxis (SAP) bundle compliance.

Results: Overall compliance to recommended antibiotic type and timing was 92.0%. Antibiotic bundle compliance
had a lower incidence of SSI’s (3.3%) compared to the non-compliant group (8.1%, p = 0.07). ANN models predicted
SSI with a 69–90% sensitivity and 50–60% specificity. The model was more sensitive when bundle compliance was
not used in the model, but more specific when it was. Preoperative white blood cell (WBC) count had the most
influence on the model.

Conclusions: SAP bundle compliance was associated with a lower incidence of SSI’s. In an ANN model, inclusion of
the SAP bundle compliance reduced sensitivity, but increased specificity of the prediction model. Preoperative WBC
count had the most influence on the model.
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Background
Surgical site infections (SSI’s) are a common problem after
many types of operations. Approximately 2% of all pa-
tients who undergo an operation in the United States will
develop an SSI [1, 2], with some types of operations, such
as colonic surgery, being much higher [3]. In addition to
the suffering this causes patients, it is a substantial finan-
cial burden [4]. This has led to efforts to identify risk fac-
tors for SSI’s and to reduce the incidence of SSI.
There are numerous risk factors for the development of

SSI’s. The July, 2017 American College of Surgeons
National Quality Improvement Program (ACS-NSQIP) SSI

model identified 28 statistically significant risk factors [5].
These include male sex, age, race, type of operation, oper-
ation complexity, American Society of Anesthesiologists’
(ASA) classification, obesity/underweight, smoking status,
inpatient surgery, wound classification, preoperative sepsis,
surgical specialty, steroid use, diabetes mellitus, sodium
level, chronic obstructive pulmonary disease, alkaline phos-
phatase level, functional status, bleeding disorders, weight
loss, ventilator dependence, albumin level, dyspnea, cre-
atinine level, hypertension, and thrombocytosis. Although
these are identified as individual risk factors, how they
interact with each other to potentiate or mitigate the risk
for an individual patient is not well known.
General approaches to reducing SSI’s have been to

improve the individual patient’s risk profile or to apply
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specific practices to mitigate risk. For example, Alexander,
et al. [6] recommended an aseptic operating room envir-
onment, preoperative antiseptic bathing, hair removal by
clipping, skin decontamination, drapes, bacterial-resistant
suture, prophylactic antibiotics, maintenance of normal
body temperature, maintenance of optimal oxygen satur-
ation, glucose control, minimizing blood transfusions,
judicious fluid management and, when necessary, delayed
primary closure [6]. The value of each of these recommen-
dations, let alone their use in combination, is variable.
There have been numerous attempts to create protocols to

reduce the incidence of SSI’s. One of the earliest was the
Surgical Care Improvement Program (SCIP), which put forth
guidelines aimed at SSI reduction [7]. However, the practical
results of SCIP implementation have been mixed at best [8].

This has led others to develop SSI reduction strategies based
on evidence-based best practices. Some of these SSI reduc-
tion “bundles” have had more success [9], especially in more
high-risk operations such as colorectal surgery [10, 11].
The American College of Surgeons National Surgical

Quality Improvement Program (ACS-NSQIP) allows
hospitals to obtain risk-adjusted data of their outcomes,
including SSI. The purpose is to provide hospitals with
reliable data that they can use to implement quality im-
provement initiatives. ACS-NSQIP provides best practice
guidelines to help with these quality improvement initia-
tives, including one for SSI (Table 1) [12]. Nevertheless,
because the occurrence of SSI is complex with only a
few factors in the surgeon’s control, we hypothesized
that there was more to this phenomenon.

Table 1 ACS-NSQIP Best Practice SSI Prevention Bundle

Preoperative Intraoperative Postoperative

Patient-Related Patient-Related Patient-Related

Encourage patient to discontinue tobacco
use for at least 30 days prior to operation

Monitor and maintain glucose levels
(< 200mg/dl) in cardiothoracic surgery
patients, including non-diabetic patients

Monitor and maintain glucose levels
(< 200mg/dl) in cardiothoracic surgery
patients, including non-diabetic patients

Identify and treat all non-surgical site
infections prior to surgery. Postpone elective
operations if necessary

Discontinue prophylactic antibiotics within
24 h after noncardiac surgery and 48 h after
cardiac surgery

Discontinue prophylactic antibiotics within
24 h after noncardiac surgery and 48 h after
cardiac surgery

Administer prophylactic antibiotics within
one hour prior to surgery (vancomycin and
fluoroquinolones should be administered
two hours prior to surgery). Select the
appropriate antimicrobial prophylaxis based
on evidence-based guidelines

Cover primarily closed incisions with a sterile
dressing for 24 to 48 h postoperatively. Wash
hands before and after any contact with
surgical site.

Cover primarily closed incisions with a sterile
dressing for 24 to 48 h

Adjust the dose of the prophylactic
antibiotics for morbid obesity

Provider-Related Provider-Related

Keep nails short. Do not wear artificial nails
or hand or arm jewelry

Wear a cap or hood to fully cover head/facial
hair and a surgical mask to cover nose/mouth
when entering the operating room
(if operation is about to begin, is underway,
or surgical instruments are exposed) and until
the conclusion of the operation.

Clean underneath fingernails prior to first
daily surgical scrub. Complete a two to five
minute preoperative scrub using appropriate
antiseptic or use alcohol-based surgical
antiseptic

Use surgical gown and drapes that are liquid
resistant

Wear sterile gloves if a scrubbed surgical team
member

Change surgical scrubs if grossly soiled or
contaminate

System-Related

Comply with standards regarding operating
room asepsis

When visible contamination of surfaces/
equipment with body fluids occurs, use an
Environmental Protection Agency-approved
cleaning solution to clean affected area before
next operation
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Artificial neural networks (ANNs) are a nonparametric
machine learning method based on modeling the neur-
onal activity of the human brain. Neuronal activity is
simulated using processing elements referred to as neu-
rodes that are arranged in layers and connected to neu-
rodes in subsequent layers through a connection which
carries a weight value. The weighted values of the con-
nections indicate the strength of the neuronal signal
from one neurode to the next. ANNs can develop pre-
dictive models based on the program’s ability to “learn”
through adjustment of the weight values on the inter-
layer connections. ANN learning enables the ANN to
accurately model nonlinear relationships between factors
related to a clinical problem and the clinical problem’s
results. We chose ANN as the machine learning method
explicitly because of its ability to identified “hidden” re-
lationships in data sets that may not be obvious through
standard, linear models.
We suspected that in addition to the surgical anti-

microbial prophylaxis (SAP) bundle compliance, other
factors may also drive SSI occurrences. Our premise is
that the occurrence of a SSI is a complex process, due to
the interaction of numerous patient risk factors and
patient-care process factors that occur with each oper-
ation. Our aim is to apply ANNs to SSI occurrence
across surgical specialties to determine the efficacy of
ANN models to predict SSI occurrence and to assess the
influence of ACS-NSQIP compliance in predicting SSI
occurrence. Our hypothesis is that SAP bundle compli-
ance will reduce the incidence of SSI occurrences and be
predictive of an SSI-free surgical outcome.

Methods
This study was approved by the institutional review
boards of the University of South Florida and Tampa
General Hospital.
All patients who underwent operations at Tampa Gen-

eral Hospital, a large, urban, tertiary, teaching hospital
located in Tampa, Florida, USA, and were subsequently
submitted to the ACS-NSQIP data base and reported
back to Tampa General Hospital from 1 July 2015 to 31
December 2015 were included in this study. The primary
outcome measure was SSI occurrence, and the second-
ary outcome measure was SAP compliance. Patients
who underwent operations and whose data were not
submitted to the ACS-NSQIP data base or were outside
this time frame were excluded. Use of the ACS-NSQIP
definitions for patient risk factors and SSI occurrence
was done to have uniform definitions of risk variables
and SSI’s. A total of 780 distinct records were obtained
for analysis. Once this list was generated, variables in-
cluding age, sex, operation, surgeon, surgical specialty
and wound classification were collected for SSI occur-
rence analysis. These variables were chosen because they

could be consistently found in the records of all patients
and would provide a profile of the breath of operative
experience at Tampa General Hospital. Specifically, for
surgeon and surgical specialty, we wished to identify if
individual surgeons or surgical specialty, as they generally
adhered to similar practice patterns, influence SSI occur-
rences. The records of these patients were reviewed for
adherence to the ACS-NSQIP best practice SSI prevention
bundle [12]. Table 1 presents the entire ACS-NSQIP rec-
ommend SSI reduction bundle. We specifically deter-
mined whether two aspects of the bundle were adhered
to: the type of antibiotic and timing of administration.
Other aspects of the bundle could not be assessed due to
lack of pertinent information in the record. These data
would provide the basis of the incidence of SSI occur-
rences in patients compliant and non-compliant to the
SAP bundle.

Statistical analysis
We compared the group of patients where both the type
of antibiotic and the timing of the antibiotic (SAP bundle)
were compliant with the ACS-NSQIP SSI reduction rec-
ommendations to the group where they were not compli-
ant. This was the basic determination if compliance was
associated with lower SSI rates. Variability of antibiotic
timing was also determined. Categorical data were de-
scribed as totals, frequencies, and percentages; continuous
variables were described as means with standard deviation
and medians with interquartile ranges. Univariate compari-
sons were assessed for covariates and outcome variable be-
tween SAP compliant and SAP noncompliant applying the
chi-square test or Fisher’s exact test for categorical vari-
ables. A p-value of 0.05 or less was considered statistically
significant. Data were analyzed with SAS 9.4 software, SAS
Institute Inc., Cary, NC, USA. For this portion of the ana-
lysis, all 780 patient records were used.

Artificial neural network analysis
ANNs have been shown to be universal approximators for
arbitrarily complex, including nonlinear, problems [13],
and thus ANN models were developed to predict SSI oc-
currence. The 11 independent variables analyzed were:
age (in years), sex (male/female), steroid use (present/not
present), bleeding disorders (present/not present), transfu-
sion (present/not present), white blood cell count (WBC/
mm3), hematocrit level (%), platelet count (platelets/mm3),
wound classification (class 1, 2, 3, or 4), ASA class (class 1,
2, 3, 4, or 5), and NSQIP surgical antimicrobial prophy-
laxis bundle compliance (present/not present). The
dependent variable was the occurrence of an SSI, which is
represented with a value 1 for an SSI and a value − 1 for
no SSI. As ANN can only analyze complete data sets, sur-
gical population sample data with missing values were
eliminated from the ANN training and evaluation data. A
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total of 646 clean records were used for training and valid-
ating the ANNs.
The training algorithm used for the ANN models was

backpropagation, which is the most commonly used train-
ing algorithm in medical ANN models [14, 15]. Various
architectures were designed following best practices [16,
17] using both single hidden layer and two hidden layer
designs, with various quantities of neurodes per hidden
layer. For each architecture for each of the ANN models,
3-fold cross validation was used to separate training and
validation data samples. The two hidden layer architec-
tures performed the best and are the ones reported below.
Two distinct ANN models were developed using the

NeuralWare® NeuralWorks Professional II Plus© neural
network shell tool. The first ANN model included the
NSQIP SAP bundle compliance variable and the second
ANN model used the other 10 variables without the NSQIP
SAP bundle compliance variable. The optimal architecture
for the full 11 variables ANN model is presented in Fig. 1
(the other ANN architectures are similar). The purpose of
the distinct ANN models is to evaluate the importance and
influence of specific variables using the leave-one-variable-
out method, which is a commonly utilized technique for
determining variable influence in ANNs [18, 19]. One add-
itional model was developed that also left out the sex vari-
able, in addition to the bundle compliance variable, to
evaluate its influence on SSI predictions.

Determination of relative importance
After all the different ANN architectures and models were
evaluated, one further ANN model that duplicated the

complete 11 variable set was developed using the JustNN©
neural network shell tool to further evaluate variable contri-
butions to SSI prediction. JustNN© tries to determine vari-
able influence using the sum of the weighted connections
between processing elements in the ANN [20].

Results
A total of 780 surgical procedures from 9 surgical special-
ties including 112 surgeons and 220 distinct CPT coded
operations were collected. Table 2 presents the patient
demographic information and SSI outcome stratified by
SAP bundle compliance status. Over 60% of the patients
were female, and the range of ages was from 19 to 94 years
old. The distribution of wound classification was clean
55.0%, clean-contaminated 37.8%, contaminated 2.8%, and
dirty 4.4%. The distribution of surgical specialties was gen-
eral surgery 40.4%, gynecology 16.3%, neurosurgery 12.1%,
orthopedic surgery 11.9%, urology 8.6%, vascular surgery
5.6%, plastic surgery 1.9%, thoracic surgery 1.9% and oto-
laryngology 1.2%. Individual surgeon data was not analyzed
as there were too few operations for each surgeon to make
for a meaningful analysis. The overall compliance of the
prophylactic antibiotic SAP bundle was 92.0% (718 of 780
patients), with appropriate antibiotic compliance of 94.6%
(738 of 780 patients) and appropriate timing of 92.1% (719
of 780 patients). Of note, patients in the non-compliant
group were more frequently smokers and underwent emer-
gent operations, while patients in the compliant group were
more frequently undergoing elective operations (Table 2).
There were no other statistically significant differences be-
tween the groups. Table 3 shows the mean time of

Fig. 1 SSI Prediction Artificial Neural Network Architecture (w/ bundle compliance)
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antibiotic administration to surgical incision based on spe-
cialty with the 25th, 50th percentile and 75th percentile
times of the time distribution. The median time to adminis-
tration was within 7min among the specialties. Three spe-
cialties had fourth quartile times of greater than 30min,
while one had fourth quartile time of less than 20min. The
distribution of SSI’s types was superficial 31% (9 of 29 pa-
tients), deep 38% (11 of 29 patients) and organ space 31%
(9 of 29 patients). Overall, cases in which there was compli-
ance with both antibiotic type and timing had an SSI rate

of 3.3% (24 of 718 patients), while those which were non-
compliant had a rate of 8.1% (5 of 62) with a p = 0.07.
The constructed neural network is visualized in Fig. 1.

The lines represent both positive and negative interactions
between the neurodes. There were two hidden layers iden-
tified. The first layer had 16 neurodes, while the second
layer had eight. It should be noted that there are multiple
positive and negative interactions between the neurodes,
implying that the occurrence of an SSI is a complex
process. The Professional II Plus© ANN models’ results are

Table 2 Characteristics of the Study Cohort Stratified by Surgical Antimicrobial Prophylaxis (SAP) Bundle

Characteristics Total No. Surgical Procedures (%) n = 780 No. SAP Bundle Compliant n = 718 No. SAP Bundle Noncompliant n = 62 p-value*

Sex

Male 307 (39.4) 280 (39) 27 (43.5)

Female 473 (60.6) 438 (61) 35 (56.5) 0.48

Age, y 0.07

< 65 547 (70.1) 498 (69.4) 49 (79)

≥ 65 233 (29.9) 220 (30.6) 13 (21)

BMI 0.77

< 30 414 (53.1) 380 (52.9) 34 (54.8)

> =30 366 (46.9) 338 (47.1) 28 (45.2)

ASA score 0.92

< 3 297 (38.1) 273 (38) 24 (38.7)

≥ 3 483 (61.9) 445 (62) 4.8 (61.3)

Diabetes 0.44

Yes 128 (16.4) 120 (16.7) 8 (12.9)

No 652 (83.6) 598 (83.3) 54 (87.1)

COPD 0.92

Yes 27 (3.5) 25 (3.5) 2 (3.2)

No 753 (96.5) 693 (96.5) 60 (96.8)

Smoker 0.001

Yes 123 (15.8) 104 (14.5) 19 (30.6)

No 657 (84.2) 614 (85.5) 43 (69.4)

On steroids 0.15

Yes 44 (5.6) 38 (5.3) 6 (9.7)

No 736 (94.4) 680 (94.7) 56 (90.3)

Emergent case < 0.001

Yes 38 (4.9) 26 (3.6) 12 (19.4)

No 742 (95.1) 692 (96.4) 50 (80.6)

Elective case < 0.001

Yes 624 (80) 594 (82.7) 30 (48.4)

No 156 (20) 124 (17.3) 32 (51.6)

SSI 0.07

Yes 29 (3.7) 24 (3.3) 5 (8.1)

No 751 (96.3) 694 (96.7) 57 (91.9)

* p-value refers to comparison between SAP compliant and SAP noncompliant and are significant at alpha level of 0.05. SSI indicates surgical site infection; ASA,
American Society of Anesthesiologists; BMI, body mass index
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presented in Table 3. Overall the ANNs predicted SSI with
a 69–90% sensitivity and a 60–50% specificity, depending
on the variable set used to develop the corresponding ANN
model. While use of the bundle compliance variable in the
ANN model lead to a higher specificity (i.e., improves pre-
dictions of non-SSI occurrence), it leads to lower sensitivity
(i.e., reduced the prediction of an SSI occurrence) (Table 4).
The sex variable did not affect specificity (i.e., non-SSI pre-
dictions), but did reduce the sensitivity for SSI predictions
by 10%, though this was still 10% greater than the sensitiv-
ity of the model that included the ACS-NSQIP compliance
variable.
The relative variable influence by summed weights,

using the JustNN© shell tool, is presented in Fig. 2, with
higher values indicating greater significance. The sum of
connection weights analysis supports the leave-one-
variable-out analysis and indicates that bundle compli-
ance is not a significant variable for predicting SSI oc-
currence. The most important variable was preoperative
WBC count with a value of 82, while the least important
one with any value was sex with a value of 6. Bundle
compliance was the fourth least important with a value
of 13. Figure 2 also indicates that the presence of bleed-
ing disorders and transfusion had no influence whatso-
ever with values of 0.

Discussion
What this study demonstrates is that there are complex
interactions among the patient factors (such as co-
morbidities, medication usage, and physiology as mea-
sured by laboratory values) the physician antibiotic

ordering practices (such as which antibiotics are or-
dered), and system factors (such as timing of antibiotic
administration) which can affect prediction of an SSI in
an individual patient. The complexity of the interaction
can clearly be seen in Fig. 1, in which the ANN identi-
fied two hidden layers of interactions with a total of 24
neurodes of both positive and negative interactions (Fig.
1). Specifically, the ANN models showed that compli-
ance with a bundle of the appropriate antibiotic type
and timing did not show a better sensitivity, although
did show a better specificity, in the prediction of the de-
velopment an SSI compared to the models that did not
use this variable. We would like to emphasize that this
study is not intended to determine if antibiotic bundle
compliance reduces the incidence of SSI occurrences,
but rather it has little value in predicting which patient
will developed an SSI.
This study has demonstrated that when applied in a

broad population of surgical patients and operations, the
machine learning nonparametric method of ANNs using
supervised backpropagation learning can predict SSI’s
with 69 to 90% sensitivity and 60 to 50% specificity, de-
pending on the variable set chosen. The output of the
ANN is a prediction for an individual patient about
whether they will suffer a SSI following surgery. Higher
sensitivity is desirable since this would enable focused
monitoring and quicker intervention for patients more
likely to suffer an SSI. Nevertheless, the question re-
mains as to why inclusion of the SAP variable decreases
the sensitivity of the ANN prediction model by 10 to 20
percentage points, yet improve specificity by about 10

Table 3 Time from Surgical Antimicrobial Prophylaxis (SAP) Administration to Incision (minutes)

Surgical Specialty, No. Surgical Procedures (%) Mean Median p25th p75th IQR SD

General Surgery, 315 (50.4) 28.6 13.0 8.0 24.0 16.0 90.0

Gynecology, 127 (16.3) 17.3 17.0 11.0 22.0 11.0 9.8

Neurosurgery, 95 (12.2) 36.1 18.0 11.0 33.8 22.8 103.7

Orthopedics, 93 (11.9) 41.1 20.0 14.0 32.5 18.5 142.3

Urology, 67 (8.6) 19.2 16.0 8.5 27.0 18.5 13.0

Vascular, 44 (5.6) 22.7 19.0 10.5 28.0 17.5 18.7

Plastics, 15 (1.9) 15.3 18.0 6.0 22.5 16.5 8.6

Thoracic, 15 (1.9) 37.5 14.0 7.5 36.0 28.5 63.8

ENT, 9 (1.2) 15.7 16.0 11.0 20.5 9.5 5.1

P25th = 25th percentile; p75th = 75th percentile; IQR = interquartile range; SD = standard deviation

Table 4 Results for ANN Models Predicting Occurrence of SSI

ANN Model
(variables used)

SSI prediction sensitivity
(n = 29)

No SSI prediction specificity
(n = 617)

All variables including NSQIP compliance variable 69.0% 60.1%

All variables excluding NSQIP compliance variable 89.7% 50.2%

All variables excluding NSQIP compliance and Sex variables 79.3% 50.2%
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percentage points? We do not have a good answer for
this question, but speculate that there is some type of
interaction with the previously mentioned patient fac-
tors. This will be an area of additional research.
Using a leave-one-variable-out methodology, the two var-

iables NSQIP bundle compliance and sex were evaluated
for their contribution to the SSI prediction models. The
NSQIP bundle compliance variable was found to not con-
tribute significantly to sensitivity for predicting SSI with a
raw 20% and net 30% improvement in sensitivity when this
variable was not present, though higher specificity was
achieved when the bundle compliance variable was present.
A different analysis using a sum of the connection weights
methodology was also utilized and confirmed the lack of in-
fluence on predicting an SSI (regarding sensitivity) for both
NSQIP bundle compliance and sex. Additionally, the sum
of the connection weights analysis also indicated that the
variables of bleeding disorders and transfusions had no
effect.
Several studies have assessed the effectiveness of SSI

bundles in reducing SSI occurrences with mixed results.
Hawn, et al. [8] and Anthony, et al. [21] report that
compliance with an SSI bundle did not reduce SSI rates.
Kim, et al. [22] in a systematic review and meta-analysis
of laparoscopic cholecystectomy found prophylactic anti-
biotic reduced superficial SSI’s but not deep SSI’s in
low-risk patients. On the other hand, several studies
have found benefit in colorectal surgery [23–25], neuro-
surgery [26], hysterectomy [27], as well as a board
national surgical database [9]. In fact, in our study, com-
pliance with the antibiotic type and timing was

associated with a lower incidence of postoperative SSI,
although it did not quite reach statistical significance.
Part of the inconsistency could be because these studies
use different bundles [10]; however, part could also be
due to the fact that none of their analyses include pa-
tient specific factors in the development of SSI’s. Studies
of efficacy of bundle compliance have generally focused
bundles in the randomized trials or retrospective co-
horts, without accounting for individual patient factors.
These interactions may affect the predictive value of
compliance adherence to SSI development.
There are been numerous studies attempting to de-

velop predictive models for the occurrence of SSI’s.
These have included major abdominal surgery [28],
spinal surgery [29], vascular surgery [30], ventral hernia
[31], and orthopedic surgery [32], among others [33].
However, there has been problems translating these pre-
diction models to other datasets. For example, Bergquist,
et al. [34] documented that several colorectal surgery
SSI predictive models did not perform as well as their
original studies when applied to another institution’s
dataset. Yet, studies on SSI prediction have generally fo-
cused on patient factors without addressing clinical
practice, such as the use of prophylactic antibiotic bun-
dles. Therefore, as with studies assessing efficacy of SSI
reduction bundles, SSI prediction models have not
assessed fully the interaction of patient factors with ac-
tual patient care.
Because the ANN models output a real value, the clas-

sification of SSI occurrence was made for all outputs
above a pre-specified cutoff value, usually zero. However,

Fig. 2 Variable Influence for the ANN Model Using Sum of Connection Weights
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modifying the cutoff value enables adjustments in the
sensitivity and specificity, but there is a tradeoff. Lower-
ing the cutoff value below zero will improve sensitivity,
but at the same time may decrease specificity. Of course,
it is pointless to predict that all patients will have an SSI
so that no differentiation is performed by the ANN clas-
sification. As an example, the third ANN model that did
not have both a NSQIP compliance variable and the sex
variable had an identical specificity, but the sensitivity
was only 79% as opposed to 90% for the model only
missing the NSQIP compliance variable. Adjusting the
cutoff downwards to make the third ANN model’s sensi-
tivity identical to the ANN model missing only the
NSQIP compliance variable resulted in a specificity of
24%. The lower specificity indicates that a greater num-
ber of patients who would not suffer an SSI would still
need to be monitored for an SSI since they were incor-
rectly classified as false positives.
ANN is a type of nonparametric machine learning. It

searches for “hidden” interactions among the variables
which may be associated with the occurrence of a spe-
cific event. Other types of nonparametric machine learn-
ing programs include support vector machines [35] and
conditional inference trees [36]. What we have found in
this study is that the most relevant factor was preopera-
tive white blood cell count, while bundle compliance
was the fourth least relevant. Others have used machine
learning program to predict SSI’s. Ke, et al. [37] used a
machine learning algorithm based on temporal changes
in wound characteristics to create a model predicting
time to SSI development. Soguero-Ruiz, et al. [38] used
laboratory testing data with Gaussian process regression,
time warping and imputation methods into a support
vector machine to predict SSI’s. Interestingly, their ana-
lysis, like ours, also showed that platelet count, white
blood cell count, hemoglobin level, among others, as
relevant factors in their prediction model.
There are several limitations to this study. One limita-

tion is that due to the retrospective nature of the study,
not all the recommended NSQIP bundle were well or
consistently documented and, therefore, could not be in-
cluded in the model. It is unknown how including these
other factors could have affected the predictive value of
compliance with the bundle. Another limitation is that
not all possible architectures of ANN were attempted. It
is possible that a different architecture could have fur-
ther improved the sensitivity or the specificity or both
for any of the ANN models. Furthermore, ANN model-
ing has not been applied to other SSI datasets. It is un-
clear how whether ANN modeling will yield similar
results to other datasets. Lastly, we also did not compare
our ANN model to experienced practitioners SSI risk as-
sessment for an individual patient. Perhaps such practi-
tioners would be more accurate. Therefore, the results

reported should be viewed as the minimum achievable
by an ANN SSI prediction model.
Future research is needed to further explore the sig-

nificance of the 9 variables other than bundle compli-
ance and sex to using the leave-one-variable-out method
to further determine their influence on the SSI predic-
tion models. Additional variable may also be evaluated
by flipping the approach and adding one in to an exist-
ing model and examining the impact on sensitivity and
specificity.

Conclusion
In conclusion, this study has provided evidence for the ef-
ficacy of using ANN models to predict SSI. ANN models
can achieve almost 90% sensitivity for predicting SSI for a
patient. Evidence from the ANN models indicate that
knowledge of compliance with SSI reduction protocols is
not a factor in predicting likely SSI occurrence. This is not
to say that bundle compliance did not reduce the inci-
dence of SSI’s, only that other relevant factors outweigh it
as a predictive factor. More importantly, this study is one
of the few studies evaluating patient-specific factors as
well as a clinical practice factors. Understanding the inter-
action is a potentially important new frontier in clinical
prediction research.
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